Factor each expression completely

x⁴+2x²+1 ​


Sagot :

Solution:

[tex] \: \: \: \: \: \: \sf \: {x}^{4} + 2 {x}^{2} + 1 \\ \: \: \: \: \: \: \sf = ( {x}^{2} {)}^{2} + 2 {x}^{2} + 1 \\ \: \: \: \: \: \: \sf = {u}^{2} + 2u + 1 \: \: \: \: \: \: \\ \: \: \: \: \: \: \sf = (u + 1 {)}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \\ \: \: \: \: \: \: \sf = ( {x}^{2} + 1 {)}^{2} \: \: \: \: \: \: \: \: \: \: \: [/tex]

The polynomial factors completely as:

[tex]\: \: \: \: \: \: \sf {x}^{4} + 2 {x}^{2} + 1 = ( {x}^{2} + 1 {)}^{2} [/tex]