Sagot :
Answer:
The union of two sets is a new set that contains all of the elements that are in at least one of the two sets. The union is written as A∪B or “A or B”. The intersection of two sets is a new set that contains all of the elements that are in both sets. The intersection is written as A∩B or “A and B”.
Step-by-step explanation:
pa brainliest po pls
[tex] \huge \tt \: ✎union \: and \: intersection[/tex]
- [tex] \large \rm \: the \: set \: of \: all \: elements \: of \: \: two \: sets\: is \: the \:\large \green{{ \sf{union.}}}[/tex]
- [tex] \large \rm \: the \:set \: composed \: of \: common \: elements \: in \: two \: sets \: is \: the \: \large \green{{ \sf{intersection.}}}[/tex]
[tex]{Suppose A = {a, b, c} B={c, d, }. \: A∩B = {c} A∪B = {a,b,c,d}.[/tex]
[tex] \large \tt solution : \\ \large \green{{ \sf{understand \: the \: concept \: of \: intersection \: and \: union.}}}[/tex]
[tex]{ \large { \pink{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}}} [/tex]
[tex]{} \ _{ \red{ \heartsuit}}[/tex]
[tex] \tt \: - hana[/tex]