Sagot :
Question: The ratio of the adjacent to the opposite side describes the?
Answer:
A. secant
B. tangent
C. cosine
D. cotangent
Explanation:
#Here are the lists that needs to remember#
(SOHCAHTOA)
sinθ=opposite/hypotenuse
cscθ=hypotenuse/opposite
cosθ=adjacent/hypotenuse
secθ=hypotenuse/adjacent
tanθ=opposite/adjacent
cotθ=adjacent/opposite
#LEARNING IS FUN
#LEARNING IS OUR POWER
#STUDY HARD
#CARRY-ON-LEARNING
[tex] \huge \blue{ \overline{\qquad\qquad\qquad\qquad \qquad}} \\ \\ [/tex]
[tex] \tt{The \: \: ratio \: \: of \: \: the \: \: adjacent \: \: to \: \: the}\\ \tt{ opposite \: \: side \: \: describes \: \: the ?} \\ [/tex]
- [tex] \tt{A. \: secant}[/tex]
- [tex] \tt{B. \: tangent}[/tex]
- [tex] \tt{C. \: cosine}[/tex]
- [tex] \tt{D. \: cotangent}[/tex]
[tex]\\ [/tex]
[tex] \circ \: \: \: \large \tt \underline \blue{B. \: \:Tangent} \\ [/tex]
[tex] \\ \\ \huge \blue{ \overline{\qquad \: \qquad \qquad}} \\ \\ [/tex]
[tex] \large \tt{Explanation:} \\ [/tex]
⌫ A. A secant is a line that intersects a curve at at least two different points.
[tex] \\ [/tex]
✔︎ B. The ratio of the opposite edge to the adjacent edge is called tangent and is represented by the symbol tan.
[tex] \\ [/tex]
⌫ C. Cosine is the trigonometric feature this is identical to the ratio of the aspect adjoining to an acute perspective to the hypotenuse.
[tex] \\ [/tex]
⌫ D. Cotangent is the ratio of the aspect adjoining to a selected acute attitude to the aspect contrary the attitude.
[tex] \\ \\ \huge \blue{ \overline{\qquad\qquad\qquad\qquad \qquad}}[/tex]