The ratio of the adjacent to the opposite side describes the ?

A. secant
B. tangent
C. cosine
D. cotangent​


Sagot :

Question: The ratio of the adjacent to the opposite side describes the?

Answer:

A. secant

B. tangent

C. cosine

D. cotangent​

Explanation:

#Here are the lists that needs to remember#

(SOHCAHTOA)

sinθ=opposite/hypotenuse

cscθ=hypotenuse/opposite

cosθ=adjacent/hypotenuse

secθ=hypotenuse/adjacent

tanθ=opposite/adjacent

cotθ=adjacent/opposite

#LEARNING IS FUN

#LEARNING IS OUR POWER

#STUDY HARD

#CARRY-ON-LEARNING

[tex] \huge \blue{ \overline{\qquad\qquad\qquad\qquad \qquad}} \\ \\ [/tex]

[tex] \tt{The \: \: ratio \: \: of \: \: the \: \: adjacent \: \: to \: \: the}\\ \tt{ opposite \: \: side \: \: describes \: \: the ?} \\ [/tex]

  • [tex] \tt{A. \: secant}[/tex]
  • [tex] \tt{B. \: tangent}[/tex]
  • [tex] \tt{C. \: cosine}[/tex]
  • [tex] \tt{D. \: cotangent}[/tex]

[tex]\\ [/tex]

[tex] \circ \: \: \: \large \tt \underline \blue{B. \: \:Tangent} \\ [/tex]

[tex] \\ \\ \huge \blue{ \overline{\qquad \: \qquad \qquad}} \\ \\ [/tex]

[tex] \large \tt{Explanation:} \\ [/tex]

A. A secant is a line that intersects a curve at at least two different points.

[tex] \\ [/tex]

✔︎ B. The ratio of the opposite edge to the adjacent edge is called tangent and is represented by the symbol tan.

[tex] \\ [/tex]

C. Cosine is the trigonometric feature this is identical to the ratio of the aspect adjoining to an acute perspective to the hypotenuse.

[tex] \\ [/tex]

D. Cotangent is the ratio of the aspect adjoining to a selected acute attitude to the aspect contrary the attitude.

[tex] \\ \\ \huge \blue{ \overline{\qquad\qquad\qquad\qquad \qquad}}[/tex]