If the three-digit number [tex]\underline{78 \: N}[/tex] is divisible by [tex]4[/tex] , how many possible values of [tex]N[/tex] are there?

Sagot :

[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]

Question:

If the three-digit number [tex]\underline{78 \: N}[/tex] is divisible by [tex]4[/tex] , how many possible values of [tex]N[/tex] are there?

[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]

Answer:

[tex]\bold{3}[/tex]

[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]

Step-by-step explanation:

We have five numbers where the last digit is even: [tex]80[/tex] , [tex]82[/tex] , [tex]84[/tex] , [tex]86[/tex] , and [tex]88[/tex] , Among them, only [tex]80[/tex] , [tex]84[/tex] ,[tex]88[/tex] are divisible by [tex]4[/tex]. So [tex]N[/tex] has [tex]\underline\bold\orange{3}[/tex] values: [tex]0[/tex] , [tex]4[/tex] , and [tex]8[/tex].

[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]

[tex]{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}}[/tex][tex]\mathfrak{HikariSquad}[/tex]

#CarryOnLearning