1. The total pressure in a closed container of three mixed gases is 96.4 kPa. The partial pressure of hydrogen in the mixture is 13.5 kPa and the partial pressure of oxygen is 29.3 kPa. The third gas in the mixture is methane, what is its partial pressure?
2. Oxygen and chlorine gas are mixed in a container with partial pressures of 401 mmHg and 0.639 atm, respectively. What is the total pressure inside the container (in atm)?


Sagot :

Problem 1:

Given:

[tex]P_{\text{T}} = \text{96.4 kPa}[/tex]

[tex]P_{\text{H}_{2}} = \text{13.5 kPa}[/tex]

[tex]P_{\text{O}_{2}} = \text{29.3 kPa}[/tex]

Required:

[tex]P_{\text{CH}_{4}}[/tex]

Solution:

[tex]P_{\text{T}} = P_{\text{H}_{2}} + P_{\text{O}_{2}} + P_{\text{CH}_{4}}[/tex]

[tex]P_{\text{CH}_{4}} = P_{\text{T}} - P_{\text{H}_{2}} - P_{\text{O}_{2}}[/tex]

[tex]P_{\text{CH}_{4}} = \text{96.4 kPa} - \text{13.5 kPa} - \text{29.3 kPa}[/tex]

[tex]\boxed{P_{\text{CH}_{4}} = \text{53.6 kPa}}[/tex]

[tex]\\[/tex]

Problem 2:

Given:

[tex]P_{\text{O}_{2}} = \text{401 mmHg} × \frac{\text{1 atm}}{\text{760 mmHg}} = \text{0.5276 atm}[/tex]

[tex]P_{\text{Cl}_{2}} = \text{0.639 atm}[/tex]

Required:

[tex]P_{\text{T}} = P_{\text{O}_{2}} + P_{\text{Cl}_{2}}[/tex]

[tex]P_{\text{T}} = \text{0.5276 atm} + \text{0.639 atm}[/tex]

[tex]\boxed{P_{\text{T}} = \text{1.167 atm}}[/tex]

[tex]\\[/tex]

#CarryOnLearning