[tex]\bold {PROBLEM:}[/tex]
Five applicants are simultaneously applying for two different jobs in a company. In how many ways can these jobs be filled?
[tex]\bold {SOLUTION:}[/tex]
Using the Combinations formula,
[tex] \begin{array}{l} \large \tt C(n,r)= \frac{n!}{(n-r)!r!} \\ \\ \large\tt C(5,2) = \frac{5!}{(5-2)!2!} \\ \\ \large \tt C(5,2)= \frac{5!}{3!2!} \\ \\ \large\tt C(5,2)= \frac{5×4×\cancel{3!}}{\cancel{3!}2!} \\ \\ \large\tt C(5,2) = \frac{20}{2} \\ \\ \large \red{ \boxed{\tt C(5,2)=10}} \end{array}[/tex]
[tex]\bold {FINAL\:ANSWER:}[/tex]
- There are 10 ways to fill the job.
[tex]\\[/tex]
#CarryOnLearning