Simplify the following factorials.
[tex] \large \frac{10!}{4!3!} \\ [/tex]
The factorial of a particular number, n, is the product of all the positive integers, simply the whole numbers, less than or equal to it.
[tex] \large \frac{10!}{4!3!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times1}{4 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1} \\ [/tex]
[tex] \large = \frac{10 \times 9 \times 8 \times 7 \times \cancel6 \times 5 \times \cancel{4 \times 3 \times 2 \times1}}{ \cancel{4 \times 3 \times 2 \times 1 } \times \cancel{3 \times 2 \times 1}} \\ [/tex]
[tex] \large = 10 \times 9 \times 8 \times 7 \times 5[/tex]
[tex] \large = 25,200[/tex]
The simplified form of the given factorial is 25,200.