Find the number of distinguishable permutations of the letters in the word BASKETBALL.
a. To find the number of ways you arrange the letters of the word BASKETBALL, we'll use the formula for distinguishable permutation.
• Since there are 10 letters in total and letters A, B and L have been used twice, our given will be n = 10, p = 2, q = 2 and r = 2.
[tex]\begin{gathered}\begin{gathered}\begin{gathered} \large \boxed{ \begin{array}{l}\tt P=\frac{n!}{p!q!r!} = \frac{10!}{2!2!2!}\\ \tt P= \frac{ 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times4\times 3 \times 2 \times 1}{ 2 \times 1\times 2 \times 1 \times 2 \times 1}\\ \tt P= \frac{3 \: 628 \: 800}{8} \\ \tt P= 453 \: 600\end{array}}\end{gathered} \end{gathered} \end{gathered} [/tex]
ANSWER:
• Thus, there are 453, 600 distinguishable permutations of the letters in the word BASKETBALL.