Sagot :
let w be width
let l be length
l = w+8
formula:
A= l x w
105m = (w+8)(w)
105m = w²+8w
105m + 16 = w²+8w+16 (completing the square)
121 = (w+4)²
√121 = ± √(w+4)² (square root of both sides)
11 = ± (w+4)
w = 11 - 4
w = 7m
l = w + 8
l = 7 + 8
l = 15m
checking
105 = 15(7)
105 = 105
let l be length
l = w+8
formula:
A= l x w
105m = (w+8)(w)
105m = w²+8w
105m + 16 = w²+8w+16 (completing the square)
121 = (w+4)²
√121 = ± √(w+4)² (square root of both sides)
11 = ± (w+4)
w = 11 - 4
w = 7m
l = w + 8
l = 7 + 8
l = 15m
checking
105 = 15(7)
105 = 105
My answers is in Quadratic equation.
Let X be the width
X + 8 be the length
A=1 . W= 105m^2
105=x (x+8)
Solve for x
X^2+8x=105
x^2 + 8 -105=0 (Final answer)
Therefore , the given situation illustrates an Quadratic equation.
Sana makatulong yan. Haha! Ü
Let X be the width
X + 8 be the length
A=1 . W= 105m^2
105=x (x+8)
Solve for x
X^2+8x=105
x^2 + 8 -105=0 (Final answer)
Therefore , the given situation illustrates an Quadratic equation.
Sana makatulong yan. Haha! Ü