simplify (10c²/2d³)2
with explanation po sana ​


Sagot :

SIMPLIFICATION

(10c²/2d³)²

Step-by-step Solution:

[tex]{ \tt{( {\frac{ {10c}^{2} }{ {2d}^{3} } )}^{2} }}[/tex]

1. Factor 2 out of 10c^2.

[tex]{ \tt{ {( \frac{2( {5c}^{2}) }{ {2d}^{3} } )}^{2} }}[/tex]

2. Factor 2 out of 2d^3.

[tex]{ \tt{ {( \frac{2( {5c}^{2} )}{2( {d}^{3} )} )}^{2} }}[/tex]

3. Cancel the common factor.

[tex]{ \tt{ {( \frac{ \cancel{2}( {5c}^{2} )}{ \cancel{2}( {d}^{3} )} )}^{2} }}[/tex]

4. Rewrite the expression.

[tex]{ \tt{ {( \frac{ {5c}^{2} }{ {d}^{3} } )}^{2} }}[/tex]

5. Use the power rule (ab)^n = a^n b^n to distribute the exponent.

6. Apply the product rule to 5c^2/d^3.

[tex]{ \tt{ \frac{ { ({5c}^{2}) }^{2} }{ {( {d}^{3} )}^{2} } }}[/tex]

7. Apply the product rule to 5c^2.

[tex]{ \tt{ \frac{ {5}^{2}( {c}^{2})^{2} }{ {( {d}^{3} )}^{2} } }}[/tex]

8. Raise 5 to the power of 2.

[tex]{ \tt{ { \frac{25 ({c}^{2} )}{ {( {d}^{3}) }^{2} } }^{2} }}[/tex]

9. Apply the power rule and multiply exponents.

[tex]{ \tt{ \frac{ {25c}^{2 \times 2} }{ { {d}^{3 \times 2} } } }}[/tex]

10. Evaluate.

[tex]{ \tt{ \frac{ {25c}^{4} }{{ {d}^{6} } } }}[/tex]

Answer:

[tex]{ \color{blue}{ \boxed{ \color{blue}{ \huge{ \boxed{ \sf{ \frac{ {25c}^{4} }{ {d}^{6} } }}}}}}}[/tex]

==================

[tex]{ \color{purple}{ \underline{ \sf{ichthus898}}}}[/tex]