A sample of a gas has a volume of 20L at 1.5 atm. What will be the volume of this gas at each
of the following pressure:
a.700 mmHg
b. 2 atm
c.105 kPa​


Sagot :

a. 700 mmHg

Given:

[tex]P_{1} = \text{1.5 atm} × \frac{\text{760 mmHg}}{\text{1 atm}} = \text{1140 mmHg}[/tex]

[tex]V_{1} = \text{20 L}[/tex]

[tex]P_{2} = \text{700 mmHg}[/tex]

Required:

[tex]V_{2}[/tex]

Equation:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

Solution:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

[tex]V_{2} = V_{1} × \frac{P_{1}}{P_{2}}[/tex]

[tex]V_{2} = \text{20 L} × \frac{\text{1140 mmHg}}{\text{700 mmHg}}[/tex]

[tex]\boxed{V_{2} = \text{33 L}}[/tex]

Answer:

[tex]V_{2} = \text{33 L}[/tex]

b. 2 atm

Given:

[tex]P_{1} = \text{1.5 atm}[/tex]

[tex]V_{1} = \text{20 L}[/tex]

[tex]P_{2} = \text{2 atm}[/tex]

Required:

[tex]V_{2}[/tex]

Equation:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

Solution:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

[tex]V_{2} = V_{1} × \frac{P_{1}}{P_{2}}[/tex]

[tex]V_{2} = \text{20 L} × \frac{\text{1.5 atm}}{\text{2 atm}}[/tex]

[tex]\boxed{V_{2} = \text{15 L}}[/tex]

Answer:

[tex]V_{2} = \text{15 L}[/tex]

c. 105 kPa

Given:

[tex]P_{1} = \text{1.5 atm} × \frac{\text{101.325 kPa}}{\text{1 atm}} = \text{151.9875 kPa}[/tex]

[tex]V_{1} = \text{20 L}[/tex]

[tex]P_{2} = \text{105 kPa}[/tex]

Required:

[tex]V_{2}[/tex]

Equation:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

Solution:

[tex]P_{1}V_{1} = P_{2}V_{2}[/tex]

[tex]V_{2} = V_{1} × \frac{P_{1}}{P_{2}}[/tex]

[tex]V_{2} = \text{20 L} × \frac{\text{151.9875 kPa}}{\text{105 kPa}}[/tex]

[tex]\boxed{V_{2} = \text{29 L}}[/tex]

Answer:

[tex]V_{2} = \text{29 L}[/tex]

#CarryOnLearning