QUESTION: If butane is completely burns in oxygen, at 25 degree celcius, 1.04 atm with 285L of C4H10, what is the mass CO2?

R = 0.0821 L. atm/K.mol
Butane gas burns in air: 4 C4H10(g) + 13 O2(g) ---> 8 CO2(g) + 10 H2O(1)


Sagot :

Given:

For butane (C₄H₁₀)

[tex]V = \text{285 L}[/tex]

[tex]P = \text{1.04 atm}[/tex]

[tex]T = \text{25°C + 273 = 298 K}[/tex]

Required:

mass of CO₂

Solution:

Step 1: Calculate the number of moles of butane.

[tex]PV = nRT[/tex]

[tex]n = \frac{PV}{RT}[/tex]

[tex]n = \frac{\text{(1.04 atm)(285 L)}}{(0.0821 \: \frac{\text{L • atm}}{\text{mol • K}})(\text{298 K})}[/tex]

[tex]n = \text{12.115 mol}[/tex]

Step 2: Calculate the molar mass of CO₂.

molar mass = (12.01 g/mol × 1) + (16.00 g/mol × 2)

molar mass = 44.01 g/mol

Step 3: Determine the mole ratio needed.

mole ratio = 2 mol C₄H₁₀ : 8 mol CO₂

Step 4: Calculate the mass of CO₂ produced using the mole ratio.

[tex]\text{mass of CO₂ = 12.115 mol C₄H₁₀} × \frac{\text{8 mol CO₂}}{\text{2 mol C₄H₁₀}} × \frac{\text{44.01 g CO₂}}{\text{1 mol CO₂}}[/tex]

[tex]\boxed{\text{mass of CO₂ = 2130 g}}[/tex]

#CarryOnLearning