a) 3, 628, 800
b) 5, 040
A.
Given:
n = 10
Solution:
10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 3, 628, 800
Conclusion:
Therefore, there are 3, 628, 800 number of permutations if all of us will pose in a row.
B.
Given:
n = 10 , r = 4
Formula:
[tex]P(n,r) =\frac{n!}{(n-r)!}[/tex]
Solution:
[tex]P(n,r) =\frac{n!}{(n-r)!}[/tex]
[tex]P(10,4) =\frac{10!}{(10-4)!}[/tex]
[tex]P(10,4) =\frac{10!}{6!} = \frac{10x9x8x7x6x5x4x3x2x1}{6x5x4x3x2x1}[/tex]
[tex]P(10,4) =\frac{3.628,800}{720}[/tex]
= 5, 040
Conclusion:
There are 5, 040 permutations of 10 of us if only 4 cousins will be taken a picture at a time.
Hope this helps.
#LearnWithBrainly