Answer:
Step-by-step explanation:
Given : Expression (3x-2y)^3
To find : Write the expression in expanded form ?
Solution :
Using algebraic identity,
(a-b)^3=a^3-b^3-3ab(a-b)
Here, a=3x and b=2y
Substitute the values,
(3x-2y)^3=(3x)^3-(2y)^3-3(3x)(2y)(3x-2y)
(3x-2y)^3=27x^3-8y^3-18xy(3x-2y)
(3x-2y)^3=27x^3-8y^3-54x^2y+36xy^2
Therefore, the expanded form is (3x-2y)^3=27x^3-8y^3-54x^2y+36xy^2
#Learn more
"Question 6 Write the following cubes in expanded form:
(i) (2x + 1)^3
(ii) (2a - 3b)^3
(iii) [3x/2 + 1]^3
(iv) [x - 2y/3]^3