what is the answer of squaring in this trinomial
(2i² + 3a + 5n)²


Sagot :

This is a special product where:
(a+b+c)² = a²+b²+c²+2ab+2ac+2bc
(2i²+3a+5n)² = (2i²)²+(3a)²+(5n)²+2(2i²)(3a)+2(2i²)(5n)+2(3a)(5n)
= 4i⁴+9a²+25n²+12ai²+20i²n+30an
(2i²+3a+5n)²
(2i²+3a+5n) (2i²+3a+5n)
4i²+6ia+10ni+6ia+9a²+15na+10ni+15na+25n²
4i⁴+9a²+25n²+12ai²+20ni²+30an

Answer= 4i⁴+9a²+25n²+12ai²+20ni²+30an