Sagot :
[tex] \huge{ \color{lime}{ \mathcal{Answer:}}}[/tex]
------------------------------------------------------------------
Write the standard form and general form of the c(4,5)r=4.
------------------------------------------------------------------
STANDARD FORM
Formula:
[tex] \tt \: d = (x - h)^{2} + (y - k)^{2} = {r}^{2} [/tex]
Given:
[tex] \tt \large \: h = 4[/tex]
[tex] \tt \large \: k = 5[/tex]
[tex] \tt\large \: r = 4[/tex]
Standard Form of C(4,5) r=4 :
[tex] \tt(x - h)^{2} + (y - k)^{2} = {r}^{2} [/tex]
[tex] \tt(x - 4)^{2} + (y - 5) ^{2} = {4}^{2} [/tex]
[tex] \green{ \boxed{ \boxed{ \tt(x - 4) ^{2} + (y - 5) ^{2} = 16}}}[/tex]
------------------------------------------------------------------
GENERAL FORM
Formula:
• The same as the Standard Form.
Given:
• Also the same as the Standard Form.
General Form of C(4,5) r=4 :
[tex] \tt(x - h)^{2} + (y - k) ^{2} = {r}^{2} [/tex]
[tex] \tt(x - 4)^{2} + (y - 5)^{2} = {4}^{2} [/tex]
[tex]\tt( {x}^{2} - 8x + 16) + ( {y}^{2} - 10y + 25) = 16[/tex]
[tex] \tt \: {x}^{2} - 8x + 16 + {y}^{2} - 10y + 25 = 16[/tex]
[tex] \tt \: {x}^{2} + {y}^{2} - 8x - 10y + 16 + 25 = 16[/tex]
[tex] \tt {x}^{2} + {y}^{2} - 8x - 10y + 41 = 16[/tex]
[tex] \tt {x}^{2} + {y}^{2} - 8x - 10y + 41 - 16 = 0[/tex]
[tex] \large{ \green{ \boxed{ \boxed{ \tt{ {x}^{2} + {y}^{2} - 8x - 10y + 25 = 0}}}}}[/tex]
------------------------------------------------------------------