if y varies inversely as x and y = 1/2 x 18 find y when x = -5​

Sagot :

[tex]\huge\bold\green{\tt{INVERSE\: VARIATION}}[/tex]

y varies inversely as x

[tex]\large\bold\blue{\tt{mathematical\: equation:}}[/tex]

[tex]y = \frac{k}{x} [/tex]

where k is the constant

[tex]\large\bold\blue{\tt{given:}}[/tex]

y=½ when x=18

[tex]\large\bold\blue{\tt{unknown:}}[/tex]

value of k

y when x=–5

[tex]\large\bold\blue{\tt{solution:}}[/tex]

First, find k using the given

[tex]y = \frac{k}{x} \\ \\ \frac{1}{2} = \frac{k}{18} \\ \\ k = 9[/tex]

Then, using k=9, find y when x=–5

[tex]y = \frac{k}{x} \\ \\ y = \frac{9}{ - 5} \\ \\ { \boxed{y = - \frac{ 9}{5} }}[/tex]

[tex]\large\bold\blue{\tt{final\:answer:}}[/tex]

[tex]\red{\boxed{y=–9/5}}[/tex]

#CarryOnLearning

y=k/x

1/2=k/18 (cross multiplication)

18=2k

18/2=2k/2

k=9

k=yx

9=y(-5)

9/-5=y(-5)/-5

y=9/-5

tama ba?