Sagot :
[tex]\huge\bold\green{\tt{INVERSE\: VARIATION}}[/tex]
y varies inversely as x
[tex]\large\bold\blue{\tt{mathematical\: equation:}}[/tex]
[tex]y = \frac{k}{x} [/tex]
where k is the constant
[tex]\large\bold\blue{\tt{given:}}[/tex]
y=½ when x=18
[tex]\large\bold\blue{\tt{unknown:}}[/tex]
value of k
y when x=–5
[tex]\large\bold\blue{\tt{solution:}}[/tex]
First, find k using the given
[tex]y = \frac{k}{x} \\ \\ \frac{1}{2} = \frac{k}{18} \\ \\ k = 9[/tex]
Then, using k=9, find y when x=–5
[tex]y = \frac{k}{x} \\ \\ y = \frac{9}{ - 5} \\ \\ { \boxed{y = - \frac{ 9}{5} }}[/tex]
[tex]\large\bold\blue{\tt{final\:answer:}}[/tex]
[tex]\red{\boxed{y=–9/5}}[/tex]
#CarryOnLearning
y=k/x
1/2=k/18 (cross multiplication)
18=2k
18/2=2k/2
k=9
k=yx
9=y(-5)
9/-5=y(-5)/-5
y=9/-5
tama ba?