Sagot :
EXPONENTS
==============================
[tex] \large \begin{align}& \sf1. \: \: {25}^{0} \\& \sf \normalsize \implies \large \orange{1} \end{align}[/tex]
[tex] \: [/tex]
[tex] \large \begin{align}& \sf2. \: \: ( {m}^{4} {n}^{4} ) \\& \sf \normalsize \implies \large \orange{ {(mn)}^{4} } \end{align} \\[/tex]
[tex] \: [/tex]
[tex] \large \begin{align}& \sf3. \: \: {( {8}^{0} )}^{0} \\& \sf \normalsize \implies \large { (1 )}^{0} \\& \sf \normalsize \implies \large \orange{1} \end{align}[/tex]
[tex] \: [/tex]
[tex] \large \begin{align}& \sf4. \: \: 4 {a}^{2} {b}^{0} \\& \sf \normalsize \implies \large {4 {a}^{2} \cdot1 }\\& \sf \normalsize \implies \large \orange{4 {a}^{2} } \end{align}[/tex]
[tex] \: [/tex]
[tex]\large \begin{align}& \sf5. \: \: - {(ab)}^{0} \\& \sf \normalsize \implies \large - ( {a}^{0} {b}^{0}) \\& \sf \normalsize \implies \large - ( 1 \cdot1) \\& \sf \normalsize \implies \large - ( 1)\\& \sf \normalsize \implies \large \orange{ - 1 } \end{align}[/tex]
[tex] \: [/tex]
Note:
When the base has a zero exponent, the value will always be 1.
==============================
#CarryOnLearning
(ノ^_^)ノ